70 research outputs found

    Vetting undesirable behaviors in android apps with permission use analysis

    Full text link
    Android platform adopts permissions to protect sensitive resources from untrusted apps. However, after permissions are granted by users at install time, apps could use these permissions (sensitive resources) with no further restrictions. Thus, recent years have witnessed the explosion of undesirable behaviors in Android apps. An important part in the defense is the accurate analysis of Android apps. However, traditional syscall-based analysis techniques are not well-suited for Android, because they could not capture critical interactions between the application and the Android system. This paper presents VetDroid, a dynamic analysis platform for reconstructing sensitive behaviors in Android apps from a novel permission use perspective. VetDroid features a systematic frame-work to effectively construct permission use behaviors, i.e., how applications use permissions to access (sensitive) system resources, and how these acquired permission-sensitive resources are further utilized by the application. With permission use behaviors, security analysts can easily examine the internal sensitive behaviors of an app. Using real-world Android malware, we show that VetDroid can clearly reconstruct fine-grained malicious behaviors to ease malware analysis. We further apply VetDroid to 1,249 top free apps in Google Play. VetDroid can assist in finding more information leaks than TaintDroid [24], a state-of-the-art technique. In addition, we show howwe can use VetDroid to analyze fine-grained causes of information leaks that TaintDroid cannot reveal. Finally, we show that VetDroid can help identify subtle vulnerabilities in some (top free) applications otherwise hard to detect

    Engineering allosteric inhibition of homoserine dehydrogenase by semi-rational saturation mutagenesis screening

    Get PDF
    Allosteric regulation by pathway products plays a vital role in amino acid metabolism. Homoserine dehydrogenase (HSD), the key enzyme for the biosynthesis of various aspartate family amino acids, is subject to feedback inhibition by l-threonine and l-isoleucine. The desensitized mutants with the potential for amino acid production remain limited. Herein, a semi-rational approach was proposed to relieve the feedback inhibition. HSD from Corynebacterium glutamicum (CgHSD) was first characterized as a homotetramer, and nine conservative sites at the tetramer interface were selected for saturation mutagenesis by structural simulations and sequence analysis. Then, we established a high-throughput screening (HTS) method based on resistance to l-threonine analog and successfully acquired two dominant mutants (I397V and A384D). Compared with the best-ever reported desensitized mutant G378E, both new mutants qualified the engineered strains with higher production of CgHSD-dependent amino acids. The mutant and wild-type enzymes were purified and assessed in the presence or absence of inhibitors. Both purified mutants maintained >90% activity with 10Β mMΒ l-threonine or 25Β mMΒ l-isoleucine. Moreover, they showed >50% higher specific activities than G378E without inhibitors. This work provides two competitive alternatives for constructing cell factories of CgHSD-related amino acids and derivatives. Moreover, the proposed approach can be applied to engineering other allosteric enzymes in the amino acid synthesis pathway

    Comparative Genomics of Mycoplasma: Analysis of Conserved Essential Genes and Diversity of the Pan-Genome

    Get PDF
    Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages

    A Novel Escherichia coli O157:H7 Clone Causing a Major Hemolytic Uremic Syndrome Outbreak in China

    Get PDF
    An Escherichia coli O157:H7 outbreak in China in 1999 caused 177 deaths due to hemolytic uremic syndrome. Sixteen outbreak associated isolates were found to belong to a new clone, sequence type 96 (ST96), based on multilocus sequence typing of 15 housekeeping genes. Whole genome sequencing of an outbreak isolate, Xuzhou21, showed that the isolate is phylogenetically closely related to the Japan 1996 outbreak isolate Sakai, both of which share the most recent common ancestor with the US outbreak isolate EDL933. The levels of IL-6 and IL-8 of peripheral blood mononuclear cells induced by Xuzhou21 and Sakai were significantly higher than that induced by EDL933. Xuzhou21 also induced a significantly higher level of IL-8 than Sakai while both induced similar levels of IL-6. The expression level of Shiga toxin 2 in Xuzhou21 induced by mitomycin C was 68.6 times of that under non-inducing conditions, twice of that induced in Sakai (32.7 times) and 15 times higher than that induced in EDL933 (4.5 times). Our study shows that ST96 is a novel clone and provided significant new insights into the evolution of virulence of E. coli O157:H7

    Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing

    Get PDF
    Background: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. Methodology/Principal Findings: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96 % of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55 % of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2 % of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8 % of the genes originally predicted by the gene finder, to correct coding sequence boundaries an

    Analysis of waste heat utilization of ship main engine

    No full text
    In order to protect the environment, save energy and reduce emissions, and promote the utilization of wave energy, this paper reviews the development history of application generation technology, summarizes its development from two aspects of optimization and application of wave energy conversion devices, analyses the application examples of wave energy generation devices on ships. This paper summarizes the application trend of wave power generation devices on ships: wave power generation should be used as auxiliary and domestic electricity for ships and wave energy should be combined with other new energy sources. Wave energy application in marine power generation can effectively reduce emissions from ships, which is conducive to the sustainable development of human society. The system mainly included low speed marine main diesel engine, waste heat boiler, electricity generation sub-system of power turbine, electricity generation sub-system of steam turbine, the heat exchange equipment, electricity generation sub-system of organic working medium steam turbine and other equipments. Based on experimental data of main engine and later theoretical calculation, this paper studied the effect rules of electricity generation power, waste heat utilization potential and related parameters of the waste heat utilization system under different main diesel load and ambient temperature
    • …
    corecore